

Curriculum map – Design & Technology Y10

YEAR 10	AUTUMN 1	AUTUMN 2	SPRING 1	SPRING 2	SUMMER 1	SUMMER 2
TOPIC(s)	New and emerging technologies	Energy, materials systems and devices	Materials – including specialist materials. Materials processing	Common specialist technical principles	Designing principles	Non exam assessment – Investigating design possibilities
Prior learning	Sustainability Carbon Footprint Product Life Cycle Assessment Know the differences of the different categories of timbers and boards.	Properties of materials Timber origins and categories Y9 (Y7) Polymers Y8 (currently) Know the differences of the different categories of timbers and boards. 6R's Renewable Energy	Plywood manufacture Timber Processing	Carbon footprint and product miles. Basic consumerism habits. 6Rs. Levers covered in physics	Students have learned about primary and secondary sources of research.	Y10 course content, including practice NEA project.

	Understand the impact	How power is	Learn how the	Recognise and	Investigate, analyse	During this half term
	of new and emerging	generated from fossil	primary sources of	characterise tension,	and evaluate the	students will learn
	technologies on: the	and nuclear fuels and	materials for	compression, bending,	work of others	what contexts they
	design and	from renewable	producing timber,	torsion and shear forces	Understand how	can choose from for
	organisation of the	energy sources such	paper, board, metals,	and stresses	investigating the work	their NEA. They will
	workplace and	as: wind, solar, tidal,	allovs, polymers and	How materials may be	of others including	be introduced to the
	equipment	hydroelectric and	textiles are and how	enhanced to resist and	design companies	marking criteria and
	Be aware of how	biomass.	they are converted	work with forces and	can inform designing	what the exam board
	computers and	Mechanical power and	into products	stresses to improve	Understand the	will be looking for
	automation have	understand how it is	into producto	functionality	variety of strategies	and given access to
	changed	stored	Be able to recognise	Understand that	that companies and	resources to support
	manufacturing through	Pneumatics and	and characterise	greenhouse gases and	individuals can	them with the NEA.
	the use of robotics	hydraulics as	different	carbon	employ to complete a	
	How innovation can	examples of kinetic	types of timber paper	are produced during the	design projectt	
	drive product	pumped storage	and board metals	manufacture of	including;	
	development and	systems	allove polymers and	products.	Collaborative design	
	enterprise including	I ne functional	toxtilos	Understand the impact	User-centered,	
	the use of crowd	properties of alkaline	lextiles.	that a consumer society	Systems approach	
	morketing	betteries	Understand how the	has on natural	diu Itorativo dooign	
Vhat students		Dallenes Recognice a range of	physical and working	resources and the	Lindorstand how to	
will know	operative and fair	smart/modern	proportion of a range	environment including	develop	
	trade organisation	materials and how	of materials offect	deforestation, mining,	communicate record	
	Linderstand how the	smart/modern	their performance	drilling, farming	and justify design	
	environment can be	materials can be used	their performance	and product miles	ideas	
	protected by	to alter functionality		Be aware of the need	Be aware of a range	
	responsible design	Be able to recognise a		for social and	of techniques to	
	and manufacturing	range of composite		governmental	support clear	
	Understand how	materials		responsibility to address	communication of	
	waste can be	Understand how the		safe working conditions	design ideas	
	disposed of with the	functional properties		and pollution.	Know how to design	
	least impact on the	of a range of		Be aware of the role	and develop	
	planet	composite materials.		that consumers play in	prototypes in	
	Understand the	Be able to recognise		reducing waste and the	response to client	
	positive and negative	and identify a range of		demand on finite	wants and needs	
	impacts new products	movements		resources.		
	have on the	Understand the		Understand the		
	environment and the	functions of		hierarchy of options in		
	assessment of the	mechanical devices to		responsible and		
	product life cycle	produce linear, rotary,		sustainable design.		
		reciprocating and		Understand how		
		oscillating movements		products are produced		
				in different volumes		

YEAR 10	AUTUMN 1	AUTUMN 2	SPRING 1	SPRING 2	SUMMER 1	SUMMER 2
		Understand how mechanisms can be used to change magnitude and direction of force, including levers, linkages and rotary systems Understand the principles of electronic systems Use systems diagrams and flowcharts to analyse and solve a given problem Understand the use of open and closed loop systems and subsystems Recognise and understand common electronic input and output components		Explain when and why different manufacturing methods are used for different production volumes Be able to link the use of relevant specialist processes to the appropriate level of production		

YEAR 10	AUTUMN 1	AUTUMN 2	SPRING 1	SPRING 2	SUMMER 1	SUMMER 2
What students will be able to do	Explain how computers and new technologies/working practices can affect production and job roles. Explain the components in a manufacturing system Explain the advantages of automation on manufacturing Explain CAD/CAM naming input and output devices Devise a detailed life cycle assessment for a given product. Apply the 6Rs to a product. Explain the meaning of social footprint. Consider the social footprint of a given product.	Describe finite energy sources. Describe nonfinite/renewable energy sources. Explain the advantages and disadvantages of finite and renewable energy sources. Name modern and smart materials and applications for their use. Explain ways in which energy can be stored and select whether it is potential or kinetic. Identify types of motion. Identify how different mechanisms such as linkages and gears can change motion. Identify/name circuit components and symbols. Draw schematic diagrams. Identify input and output devices.	Produce descriptions of the material processes including diagrams for timber, paper and boards, metals, polymers and textiles. Select materials for a product/use based on the material properties.	Identify different types of forces and calculate static and dynamic forces. Explain the impact consumers have society and nature including deforestation, mining, pollution, product miles and strategies to reduce impact including sustainable designing. Identify and justify appropriate scales of production in relation to production volumes.	Students are able to name popular designers and design companies and the characteristics of their products. Students are able to use the work of others to inform their own ideas. Students are able to use a range of presentation/ design methods to present their own ideas appropriately. Be able to critically evaluate prototypes and suggest modifications	Choose and analyse a context. Identify design possibilities and a relevant client. Create a client profile, design brief and specification
Assessment	End of unit assessment test	End of unit assessment test	End of unit assessment test	End of unit assessment test	End of unit assessment test	

YEAR 10	AUTUMN 1	AUTUMN 2	SPRING 1	SPRING 2	SUMMER 1	SUMMER 2
Tier 3 vocabulary	Obsolescence Automation Co-Operative Ecological Sustainability Manufacture Disposability	Fracking Turbine Generator Photovoltaic cell Hydroelectric Biofuel Pneumatics Hydraulics Graphene Composite	Ductile Tensile Strength Density Galvanize Anodize Deciduous Felling Seasoning Polymer Cellulose Fibers	Static Load Dynamic Load Tension Compression Torsion Bending Shear Lamination Reinforcing	Society Influence Design Movement Cultural Ethical	Context Analysis Client Design Brief Specification
Extended reading opportunities	https://technologystud ent.com/despro_flsh/N EW_GCSE3.html https://www.bbc.co.uk/ bitesize/examspecs/zb y2bdm	https://technologystud ent.com/despro_flsh/N EW_GCSE3.html https://www.bbc.co.uk/ bitesize/examspecs/zb y2bdm	https://technologystud ent.com/despro_flsh/ NEW_GCSE3.html https://www.bbc.co.uk /bitesize/examspecs/z by2bdm	https://technologystuden t.com/despro_flsh/NEW GCSE3.html https://www.bbc.co.uk/bi tesize/examspecs/zby2 bdm	https://technologystu dent.com/despro_flsh /NEW_GCSE3.html https://www.bbc.co.u k/bitesize/examspecs /zby2bdm	https://technologystu dent.com/despro_fls h/NEW_GCSE3.html https://www.bbc.co.u k/bitesize/examspec s/zby2bdm